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POSSTIBLE OCCURRENCE OF BOUNDARY SHOCK WAVES

By E. Dale Martin
Ames Research Center

SUMMARY

The possible occurrence of a viscous region near a surface from which
there is rapid efflux of gas, accompanied by large heat transfer, is postu-
lated and investigated theoretically. Such a viscous region, denoted as a
boundary shock wave, may occur in the case of a large high-speed meteor enter-
ing the earth's atmosphere. The conditions across a boundary shock wave and
its structure are calculated from the appropriate macroscopic equations
reduced to closed-form expressions under the restriction of a perfect gas
flowing at constant total enthalpy.

INTRODUCTTION

The purposes of this report are to introduce the concept and to postulate
the occurrence of boundary shock waves. A boundary shock wave may be defined
as a thin region of viscous flow adjacent to a surface from which gas is flow-
ing at a very high rate with large heat transfer. The flow in this region is
dominated by heat conduction and viscous compressive stresses whose rapid
decay causes rapid variations of the flow properties over a small distance.

A detailed discussion of the causes of boundary shock waves is given in the
section following the Introduction.

If a boundary shock wave can occur as postulated, the distinct region of
viscous flow would be possible only with high influx Reynolds number and with
a source of high heat transfer (such as intense radiation being absorbed) at
the wall. This high Reynolds nunber theory is the opposite limiting case to
the more usual mass injection or vapor ablation at a rate small enough that
the influx does not appreciably alter the boundary-layer character of an
external flow along the wall. In the latter case of mass influx at a small
rate (and small influx Reynolds number), the injected flow is entirely viscous,
whereas injected flow at high influx Reynolds number must be essentially invis-
cid a short distance from the surface. The boundary shock wave is therefore a
"quick-transition region" belonging to the class of asymptotic phenomena dis-
cussed by Friedrichs (ref. 1). The boundary shock is analogous both to a
boundary layer, in which the flow is along a wall, and to a shock wave, in
which the flow is normal to the thin viscous region (see fig. 1; notation is
defined in appendix A).

The boundary shock phenomenon may be important in understanding the flow
over a certain class of meteoric fireballs. Large stone meteors that enter
the earth's atmosphere at very high velocity have a high rate of mass transfer
from the surface by vapor ablation as a result of the intense radiative heat-
ing of the surface by the extremely high temperature air behind the shock wave
(see refs. 2 to 5). When the ablation rate is so large that the distance, L,



from the forward molten surface of the meteor to the interface between the air
and the vaporized meteoric material is much greater than the "viscous length,"
1y, then Rey = L/1, is large and a boundary shock wave is postulated to be

present in the vapor flow, with inviscid flow Jjust outside 1it. (See rig. 2,
which represents the flow near the stagnation point of a blunt body.)

A boundary shock wave may also occur in the flow of a gas out of a porous
wall if there is a strong source of heat, such as radiation being absorbed at
the surface and conducted back into the wall and gas in the pores. The gen-
eral theory to be developed below will apply to that case if the flow can be
laminar, not turbulent.

The boundary shock wave will be analyzed here from the macroscopic, or
continuum, point of view. The thermodynamic and flow variables must satisfy
the classical macroscopic conservation laws, which will be approximated by
using the Navier-Stokes equations of one-dimensional flow. The results in the
general theory will be limited by the applicability of the approximate linear,
i.e., first order, transport laws (the stress-strain rate relationship and
the heat-conduction law) of the Navier-Stokes formulation. If the gradients
become too steep, so that the gas is too far out of mechanical equilibrium,
these transport laws will not give a very good approximation, and this must be
kept in mind. It would be desirable to have a comparable microscopic analysis
for comparison, but the state of the art in nonequilibrium kinetic theory for
flow near surfaces may not at present be sophisticated enough to permit such
an analysis. The one-dimensional macroscopic equations to be used here to
study the flow through the boundary shock wave are the same as those that have
been used successfully in the study of shock-wave structure. Professor
Liepmenn and his coworkers (ref. 6) have shown that the structure of most
shock waves, especially in the downstream portion, is described very well by
the Navier-Stokes equations. The structure of a boundary shock wave corre-
sponds in many cases to a downstream portion of a simple-shock-wave solution.
(Note then that the boundary shock may be entirely subsonic.)

Calculation of the flow through a boundary shock will be based largely on
the wealth of existing literature (see refs. 6 to 27) on shock waves and their
structure. The relationships between the states and flow variables on both
sides of a shock wave have analogous counterparts in relationships across a
boundary shock which depend on the heat-transfer coefficient at the boundary
as well as on the thermodynamic states (to be shown).

The sections which follow in this report will include: (1) a discussion
of the causes of boundary shock waves; (2) development of the general theory
for one-dimensional, laminar, steady flow through a boundary shock in a per—
fect gas with longitudinal Prandtl number equal to unity, including explicit
expressions for the Jjump conditions, the heat-conduction coefficient at the
wall, and the structure, or variation of properties through the boundary shock;
and (3) an approximate special application of the general theory to the spe-
cial case of very rapid vapor ablation from a blunt body, with the properties
of a stone meteor, entering the earth's atmosphere at high speed.



CAUSES OF BOUNDARY SHOCK WAVES

Consider a gas flowing out of a nearly plane wall (fig. 1(c)) by either
blowing through pores in the wall or vapcr ablation, with radiative heat flux,
~-q,., being absorbed at the wall (to the left of b) in both cases. Let the
influx Reynolds number, Rey, be large enough that most of the flow within
length L is inviscid. Since there is no source of viscous effects to the
right of b, any viscous effects must originate at the wall (to the left of b).
To understand the origin of the viscous effects in b to e, we must examine
the mechanism of mass transfer within the region from s to b.

Consider first the case of blowing through very small pores. At b the
velocity has become essentially perpendicular to the wall. Assume that -q,
is absorbed within a very short distance inside the surface s and is con-
ducted back through the wall and into and back through the gas in the holes
(to the left in fig. 1(c)) at a high rate. In a one-dimensional flow the
viscous-compressive stress and heat-conduction flux are, respectively,

T = {I du/dx and q, = -k aT/dx (1)
so that
7/a, = -Pr(au/e, dT) (2)
where
Pr = [ep/k (3)
e o= 2= (33 ¢ (1/3)e ()

and where Pr is the "longitudinal Prandtl number,” . is the shear-viscosity
coefficient, A is the second viscosity coefficient, k 1s the bulk viscosity
coefficient, k is the coefficient of thermal conductivity, cp 1s the spe-
cific heat at constant pressure, u 1is the velocity, and T is the tempera-
ture. 1In the effective one-dimensional flow just inside the holes, the large
heat flux, -q,, to t@s left is accompanied by an effective viscous-compressive
stress T. Unless Pr 1is zero or infinite, heat conduction in a compressible
gas is in general always accompanied by a viscous stress. Recall also from
kinetic theory (e.g., for a monatomic gas, see ref. 6, p. 1317) that the
thermodynamic pressure is p = (1/3)p(ci1® + 2¢c2%) and p - T = pci® (where

u + ¢y and cp are the components of molecular velocity in the x direction
and its normal, respectively, and ( ) is the average weighted by the dis-

tribution function, so that T = (2/3)p(c2® - ¢32). The viscous stress T is
different from zero if the averages of the different components of the random
velocity are not equal. They evidently are not equal in the presence of a

large heat-conduction flux, e = pccy, which itself is different from zero

because of the asymmetry of ci. (Here c2 = c;2 + 2¢c52.) The asymmetry
of ¢, 1in general makes its average squared value different from co2.



Furthermore, the viscous stress just inside the holes cannot end abruptly, but
must decay within a finite distance that is determined by the equations of
motion. Therefore the viscous stress, and an accompanying heat flux, exist
also at b. Thus, if there is a significant amount of heat absorbed at the
wall, viscous effects will be present at b, and the region of their decay is
the boundary shock wave.

In the case of rapid vapor ablation, consider only a material that
vaporizes from a liquid surface and has no chemical reactions after the vapor-
ization. Assume the radiation is absorbed and the molten material i1s vapor-
ized within a few molecular diameters at s. The high heat conduction to the
left within that region is developing the conditions that will produce a
viscous-compressive stress in the vapor state: T = (2/3)p(co? - ¢,2) (for a
monatomic gas). Note that under mild conditions (small heat transfer, low-
speed vaporization), the vaporization takes place reversibly, and the vapor is
considered to be in equilibrium at the end of the phase change. Under more
extreme conditions (high rate of radiation absorption and heat conduction just
inside the surface, producing the high rate of vaporization) one expects
mechanical (e.g., translational) nonequilibrium to be significant in the
vaporization process. Translational nonequilibrium is described macroscopi-
cally by the concept of viscosity. A large rate of heat transfer (to the left
in fig. 1 or fig. 3) at s and within € is accompanied by a time lag in
passing the translational energy from the axial mode (x direction) on to the
degrees of freedom of the motion in the directions normal to the x direction.

The lag makes c;2 > co=; that is, because of the lag, the molecules with
motion mostly normal to the x direction are not moving (on the average)
quite as rapidly as those in the x direction (relative to the mass velocity
u), and are therefore tending not to break their intermolecular bonds as rap-
idly. The viscous stress T 1s a measure of this lag. (For polyatomic mol-
ecules there will also be a lag associated with the rotational degrees of
freedom, also affecting T.)

The stress T develops rapidly during the vaporization because, in a
pure liquid state, the molecules are effectively in contact and there is prob
ably very little lag in transferring the energy to modes normal to the axial
motion; but the lag develops as the molecules acquire the additional energy
that will free them from the constraints of” the intermolecular forces, and as
they begin to separate from each other. By the time the phase transition is
completed (at ©b), the viscous stress T can be represented by
T = (2/3)p(;;§ - ¢;2) = du/dx. This stress is accompanied by viscous dissi-
pation of energy and an associated heat-conduction flux which, in the vapor
state, can be represented by q, = pc2c, = -k AT/dx.

In the above discussion, from the microscopic (molecular) point of view
we see that there is a tendency, which is measured by T, for the vaporization

process to be retarded. This has the effect of a compression opposing the
expansion of the phase change, so T < O, Refer to figure 3, on which the



sketch and curves are idealized and qualitative.* Let the mass velocity deriw
ative, du/dx, be separated into two terms (effects of two contributions),

@_@ +<@
dx ax phase x/visc

where
(du/dx)phase the contribution representing the tendency of the molecules at
a station x to break their intermolecular bonds and sepa-
rate from each other
du/dx )4 the retarding effect of viscosity on the velocity change
visc Y Yy

(effect of mechanical, or translational, nonequilibrium);
or a resistance to the separation of the molecules (associ-
ated with )

At b, the term (du/dx)phase has vanished and the term (du/dx)yige has the
value appropriate to a gas, and is given by T/fi. The effect of (du/dx)+visc
between s and b 1is a downward shift from the curve of (du/dx)pnase to give
the resulting mass velocity derivative, du/dx. In order for the vaporization
process to be retarded by viscosity, T must be negative, so that the velocity
derivative (proportional to acceleration), du/dx, during the phase change is
decreased by the viscosity. This macroscopic reasoning is therefore com-
pletely in line with the results of reasoning on the molecular level, above.

The viscous effects that develop in the vaporization process cannot end
abruptly, but must decay within a distance determined by the conservation
equations., That is, although the intermolecular bonds are assumed to be over—
come very quickly, the lag in communicating the translational energy to the
lateral degrees of freedom may take much more time to accommodate. The region
in which these mechanical nonequilibrium effects relax (i.e., viscous effects
decay) with distance from their source is the boundary shock wave.

Tt may be noted that, in order for T, to be negative as described
above, the density must undergo a slight "undershoot' at the end of the vapor-
ization process, and the mass velocity u undergoes a slight "overshoot."
Thus, near the end of the vaporization process, the curve of velocity versus
distance (fig. 3) has a maximum point. This overshoot in mass velocity is
actually exceedingly small, and the slope of the velocity curve at
X =Xy =0 + e 1is extremely small in comparison to, say, Au/e (slope of
dashed line on curve of u vs x). The overshoot in velocity may be explained
qualitatively by referring to figure 3. From figure 3 one can see the over-
shoot in u, or the maximum point on the u curve, as corresponding to the

*on figure 3 the curve of velocity, for example, is highly distorted.
The change of u (or p) during the phase change, from s to b, is several
orders of magnitude greater than the change from b to e. Also the distance
from b to e 1is several orders of magnitude greater than the distance from
s to b.



point where du/dx goes through zero. It is the point where (du/dx)pnase
has come back down to the relatively very small value equal to —(du/dx)v.isc

before vanishing.

The arguments that have been presented in this section are not intended
as proof that the postulated viscous effects will occur. Although one does
not expect that the viscous effects will have vanished at b, absolute cer-
tainty as tc whether or not 7, will be different from zero in a given case,
so that a boundary shock wave will occur, would depend on either adequate
experimental verification or on a rigorous analysis by nonequilibrium kinetic
theory of ligquids and gases for the phase-transition region. Only such an
analysis could supply an exact value for .

The values of the stress T, and the heat conduction g, would be

determined by solving simultaneously all the equations pertinent to a specific
problem, as is done in the example calculation in the last section of the
analysis. However, the general theory of the boundary shock can be worked out
in terms of T, and qcb, without specific application, as in the following

section.

GENERAL THEORY OF THE PLANE LAMINAR BOUNDARY SHOCK WAVE
IN A PERFECT GAS WITH Pr =1

The general theory of the laminar boundary shock wave is formulated
independently of the details of the mass-transfer process under the assump-
tions: (1) the flow is close enough to mechanical equilibrium that the
Navier-Stokes equations give a valid approximation to the description of the
macroscopic thermodynamic and flow variables; and (2) the geometrical struc-
ture of the surface is of small enough detail that the velocity vector can be
considered to be essentially one-dimensional (normal to the wall) in the main
portion of the region of interest. This is equivalent to the assumption
€ << & in the previous section. Then the conditions across the boundary
shock wave and the structure can be calculated from the Navier-Stokes equa-
tions and depend only on the values of the macroscopic parameters at the vapor

boundary b.

The exact equations for conservation of mass, momentum, and energy in
one-dimensional steady flow in a nonaccelerating coordinate system are:

%(pu) =0 (5)

d, oy _ d4f

E;(pu ) = o (6)
pu é% <% + % u2> = é%(—q + uf) (7)




where x 1s the distance to the right of the boundary b, e 1is the internal
energy per unit mass, and f is the sum of the "surface forces" in the x
direction on an element of mass. 1In the gas,

It is often convenient to discuss the equations in terms of the specific
enthalpy,

h=e+p/p (9)

rather than the internal energy. The equations of state for a thermally and
calorically perfect gas are

P = pRT, h = cpT, e = cyT (10)
where R, cp, and cy are constants related by

cp/ev = 7, cp - ¢y = R (11)

If heat transfer by conduction and radiation are considered, we can write for
the heat flux in the x direction (positive to the right):

4 =d, + dp (12)

where q,. is the radiative heat flux. Although radiation is included, it

will be assumed that the gas is transparent to radiation and that radiation
emitted by the gas in the boundary shock region can be neglected. Thus, all
radiation is assumed to be emitted or absorbed outside the region from b +to
e, and g, 1s therefore constant across the boundary shock. In the Navier-

Stokes formulation the viscous stress and the conduction heat flux are given
by equations (1).

The boundary conditions to be used with equations (5), (6), and (7) are:

at X = Xy = ot: u = Uy s T =Ty, 9, = 9 (13)

as x - oo: = - 0, = -0 (1h)



For simplicity, in the following sections, it will be assumed that Pr
(eq. (3)) is equal to unity. This assumption is not overly restrictive since,
as Liepmann and his coworkers point out, Pr s 1 for most real gases (ref. 6).
The result, as has been shown for shock waves and as will be shown in a later

section for the boundary shock (eg. (57)), is that

Qe = ™, (Pr = l) (15)

at every point in the boundary shock. With this result, it will be convenient
to present further results in terms of

S W (16)
he — (1/2)opup®  (1/2)p w2

Conditions Across a Boundary Shock for Pr=1

The conditions across a boundary shock wave are analogous to the
conditions across an ordinary shock wave, including the Rankine-Hugoniot rela-
tion, the Prandtl relation, and other normal-shock relations (see, e.g.,
ref. 10, pp. 57-64) and are obtained in much the same manner.

Integration of equations (5), (6), and (7) and use of the remainder of
equations (1) through (15) give

P U, = Polle (17a)
P+ obub2 = Tp T P * P_UE (17p)
b 1Y
1 2 Y b 1 2 Y €
= U —= — == + —t— = 17c
> b * 7-1 Py 2 € 7-1 Pe (27¢)

where subscript e denotes a value as X - », that is, outside the boundary
shock. Note that the assumption of Pr = 1 has eliminated T and q from
equation (17c), so that the total emthalpy, h + (1/2)u®, is constant.

To derive a relation analogous to the Rankine-Hugoniot relation, combine
(17a) and (17b) to obtain

b D T.
b _ 3 = U - w, t b (18)
pbub Pele pbub



Then multiply (18) by ue + ¥, to obtain en expression for ue® - uy2, which
may be equated to another expression from (17c) with the resulting relation
analogous to the "Hugoniot relation" (cf. ref. 22, p. 6):

P S
1 1 B b 2y DPe b
- a— —_ —_— ]l f—) = S | == = — 1
(P Pb)<pe tE ) 5 < 5.) = 51 <pe 5, (19)

This can be rearranged into a form analogous to what Liepmann and Roshko call
the "Rankine-Hugoniot relation" (ref. 10, p. 6k4):

1+ ¢l Pe o
pe B Vi B Pb
S 1 e T (=0)

We may plot pe/pb versus pb/pe, which depends on (—Tb/pb) = (1/2)7Mb20hC

(see fig. 4). Iater remarks are given concerning positive and negative values
of this parameter. We may call this plot a "Boundary-Shock Hugoniot Diagram,"
by analogy to the Hugoniot Diagram for a simple shock wave.

Next is developed a relation for boundary shock waves which is analogous

to (and, in the case T >0, reduces to) the Prandtl relation for shock
waves. Denoting the speed of sound as

e = JZB =\7RT (21)

we can write equation (18) as

2 2
a T
U - Ug = e - 2 (22)
Tie 7w, Ppty

and (17c) as:

I
Q

w2 a2 ul® a2
D b _ e e _ 1 <7+¥> ax2 = (23)



(Equation (23) may be regarded as the definition of a¥* and the constant C.
In cases where uyp > ap, a* 1s the actual value of a 1n the boundary shock

wave where u = a.) Note from equation (23) that

-1 -1
ap® = (y - 1)C - ZE— u?; ae® = (7 - 1)C - 15— u.?

which may be substituted into (22) to obtain

_ 2 (1 _
U T Ue = &% <u—e b> 7+1 <pbub> (Bha)

Equation (2L4a) may be further manipulated to give finally

2 2y o
-
Uely, = &% 4 1 <pe — pb> (2hp)

For the case of the simple shock wave (7, = O and the "boundary" - —c), the
Prandtl relation, which determines that flow through a shock wave must go from
either supersonic to subsonic or vice versa (see ref. 10, p. 57), is recovered
from equation (24b). For the case of the boundary shock, such a restriction
is not imposed.

Other useful relationships across the boundary shock can now be developed
as follows: Equations (23) and (24b) give two expressions for (a*/u,)® which,
when equated, give an equation that can be rearranged into the quadratic form

SEMOR

where N

1

2B = 27 —2+ich>

7+1 M, 2 f¢

a=22 (L, L (26)
7+l \ 27 My
Uy
" =5
J

10



The solution is

b -p B2 -2 (27)

which is thus determined for given 7y, Mb’ and Cyp (or given A and B). To
find the pressure ratio, combine equations (172) and (17b) into the form

Pe 2 Pp 1
= =1 — — = 28
5, + My, ( 5. T2 hc> (28)

The temperature ratio is obtained from the thermal equation of state in (10)
and the energy relation (17c) as

zor e @]

The Mach number downstream of the boundary shock, Mg, can be found by writing
equation (17b) in the form

from which

2 Pe [ 1 1
WM = [E; <l + 7M'b2 + > Chc> - ] (30a)

As an alternative, one could also use

Mez ue2 7RTbe2
B 7RTe ub2

into which equations (29) and (17a) may be substituted to give

11
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@)

where pb/pe is given by (27).

(30p)

Me

The conditions prescribed by the equations in this section are possible
only if the associlated entropy production is positive; thus the second law of
thermodynamics must supplement the conservation equations, (17). It can be
expressed as

q
“p

— 20 (31a)
Pty Ty

NS = D8 = LeS = 8¢ = Sy —

where s 1is the specific entropy, Ais 1s the entropy production per unit
mass due to the irreversible processes (cf. refs. 28 and 29) within the bound-
ary shock wave, and AeS 1s the change in entropy due to heat transfer (exter—
nal process) across the boundary shock; or

Ais Se - S'b 1 2
= = >
5 S Mo, 2 0 (310)

The state variable, entropy, can be obtalned for a perfect gas from

T P
s — 8 = C in - R In (32)
ref P Trer ref

With use of s, as the reference value and s, as the value of interest,

equation (32) leads to
P, /0N
71 = 1nl-& (b
= (se - sy) = Zn[Pb <?%>:] (33)

Finally, equations (31) and (33) give as the required condition

1 ae = e (Y], 2 - 2

12



An interesting point here is that the dimensionless number on which the curves
on the boundary-shock Hugoniot diagram (fig. 4) depend (in addition to y) is
Just the ratio of the change of specific entropy of an element of mass due to
transport of entropy (i.e., exclusive of entropy production within the mass
element) across the boundary shock, to the gas constant R, that is, (cf.

egs. (31))

_ L G
—2 == M, = - & (35)

For given y and Cp, the quantities [(y - 1)/Rlags, [(» - 1)/Rl(se - sb),
pe/pb, pe/pb, Te/Tb, and M, can now be calculated and plotted versus M,
using equations (25) through (34). The results for Ch, 2 0 are shown in
figures 5 through 10. The possibility of cases for which Chc < 0 will be

discussed later. Although the results shown on the figures were computed for
Y = 5/3, they are qualitatively the same for other values of 7y and are eas-
ily computed from equations given herein.

It is important to note first of all that the density ratio given by
equation (27) and the other quantities given in figures 5 through 10 are
double-valued because the quadratic equation (25) has two roots. The second
law of thermodynamics (in the form of eq. (34)) determines that only the minus
sign in (27) is possible since, as seen in figure L, the roots corresponding
to the plus sign, which are shown as dashed lines, are characterized by nega-
tive entropy production. As a matter of interest, the total specific entropy
change is shown in figure 6 to point out that it is negative in some cases
where the entropy production is positive as required by the second law of
thermodynamics. Figure 6 is presented simply to illustrate this fact. It is
interesting to compare figures 5 and 6. The difference between the total
entropy change and the entropy production is, of course, the nondissipative
part of the entropy change, that is, the transport of entropy due to heat con-
duction (see. eg. (35)).

From figures 7 through 10 we see that the case for which ChC =0 1s
obviously singular. For the limiting case Chc = 0 there is no boundary
shock. If the efflux is subsonilc (Mb < 1) and ChC -> 0, the boundary shock
simply vanishes. If the efflux is supersonic (Mb > 1) and ChC - 0, the

results correspond to a simple shock wave with no boundary, that is, the bound-
ary shock becomes a detached simple shock wave. (This latter case, the
detached shock wave, is known to have been observed experimentally within the
gas ejected supersonically from a porous blunt body (ref. 30). This has been
referred to as "shocking down" of the injected gas.)

Another important point to consider in calculating the possible conditions
existing across a boundary shock wave is that the density ratio given by equa-
tion (27) and, consequently, the pressure and temperature ratios and the Mach
number Me are physically possible only if

13



B% >4 (36a)

y+1l\ (-1 2\
on 2 [ () (5 hz) - (o

For vy = 5/3, the curve of the minimum possible Chc for pb/pe to be real
for specified M, is shown in figure 11. Note that this consideration also
does not rule out negative values of Cp, (except at M, = 1), but does limit
their magnitude.

or

75%2) (360)

Results for positive Chc have been discussed above, for which the heat

is conducted back through the outflowing fluid, in the same direction as the
heat conduction occurs in the physical situation existing in a simple shock
wave. We may now also consider the possibility of negative values of Chc,

for which heat conduction is in the opposite direction to that in a simple
shock wave, that is, In the same direction as the gas flow. As an example cal-
culations were made for Chc = ~-0.1l. The density and pressure ratios and the

entropy production are shown in figure 12. As seen from figure 12, the Mach
number at the boundary is limited to values less than 0.76 or greater than
1.57 for this case. Both roots in equation (27) are shown in figure 12, and,
as seen, the branches of the curves corresponding to the two roots are con-
nected at M, = 0.76 and 1.57 since they have common values there. The
entropy production for the branch corresponding to the plus sign in equation
(27) is always negative, and is negative for part of the branch corresponding
to the minus sign. (Negative—entropy—production portions of the curves on
fig. 12 are characterized by dashed lines.) But there do exist "low-speed"
and "high-speed" portions for which Ass > 0. For the low M, portion Ajs/R
for the branch corresponding to the minus sign in (27) is so small as to be
imperceptible on figure 7 for Chc = -0.1, but it is positive near M, = 0.

No claim is made here regarding the physical existence of the cases for
negative ChC for the following reason. As pointed out by Hayes (ref. 22),

existence of a gasdynamic discontinuity (which the boundary shock is for

Rep = «) depends on the stability of the phenomenon, both in the large and in
the small, in addition to satisfaction of the conservation laws of mass, momen-
tum, and energy, the equations of state, and the second law of thermodynamics.

The cases with positive Chc correspond to simple shock-wave solutions which

are known to be physically realistic, that is, to be stable and exist in real-
ity. Although the cases with negative Chc do not correspond to solutions

known to be physically realistic, and hence have not been proven to be stable,
the possibility of their existence is not ruled out. In a given application,
the actual value of Chc would be determined from appropriate eguations, as,

for example, is done in a later section in the application to rapid vapor abla-
tion. It should be pointed out here that, as Chc -+ 0 with My > 1, the

1h



boundary shock detaches. Thus, at least for M, > 1, one may not expect the
boundary shock wave to exist for Chc < 0 in some applications, since required

Jumps in the flow properties may be accommodated by a detached shock.

Equations are presented above for calculating conditions across a boundary
shock wave for given values of y, M,, and Ch,+ However, in a given problem,

for example, one discussed in a later section, one may wish to calculate the
conditions for given 7, M,, and pe/pb. The following equations are presented

for convenience in that case. An expression for [1 + (1/2)Cp,] from equa-
tion (28) may be substituted into (25) and (26) to obtain

P\ o P .
<p_e> + 2B <—D—-E>—A =0 (37)

where
P
2B' = _i_— —i)E
(7-1)M. % b
(38)
A! = e
2
(V"l)Mb

which has the solution

o _ 5 +~N(B)Z + A (392)

(where only the positive square root is chosen in order that pb/pe be posi-

tive, since B' is always positive). In many cases (B')2 may be much greater
than A, so that it may be difficult to obtain an accurate number from (39a).
In those cases the root of (37) is computed more easily from

0 JonE oo
€ pr 4N (B)® 4 A

(39b)

Calculation of Cp Te/Ty,, and Mg then follows from equations (28), (29),
and (30).

In later work it will also be found convenient to make calculations for
given values of 7y, M,, and Mg. For that purpose the following equations are

given. Equation (30b) can be solved for (pb/pe)z as
. 15



IHIE mm NN | N -

2 S ———
Pe sz + -l 2
1
Equation (29) becomes
p _ 2 _ 2
e = S W (41)
2 -

Since the density ratio is known from (L40), the pressure ratio can be computed
from

2 2 ) 2
pe peue 7/NEb _ b &_ (11-23.)

(keb)

and (l/E)ChC can be found from equation (28), with use of (40) and (42a), as

7$e%> ) <} * V;b%>

2Ly 2
__%Mil+12>_<1+12> (43)
My [1 4 Zé_ M_> PMe "My

o
Lo, =22 (1 +
2 c Pe

Structure of a Plane Boundary Shock

In order to calculate the variation of the flow variables through the
boundary shock wave, one may begin with the integrated forms of equations (5),
(6), and (7) and with the boundary conditions (13) and (14). (Conditions (13)
are actually Just definitions of the symbols for the boundary values. To
these could be added: p = Ops T = Tps P =Py etc., at x = xp = 0t.) With
use of the appropriate auxiliary expressions, including the equations of state,
(10), the differential equations and boundary conditions may be put in terms
of only two variables, u and T. Then it is convenient to make the equations
dimensionless by defining and substituting the dependent variables:
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T = u/uy, T = T/Ty (Lk)

and a new independent variable

. prubfo o (45)

=

~ .
With the assumption Pr = const., | is proportional to X, since cp is con-

stant, but the variation of [ need not be further specified if the results
are left in terms of the independent variable ¢. We now have the equations:

du — 1
— -1

,
L (46)
Qbub 7Mb

ag M=

gl =l

= ~dc T
2 2
d_ %, .T___E + 1 T :]_ —__EL__E + ig ] = - [i__}__—z +-%ﬂ+— " 2 + b2
de | Pr (7-1)Mp= 2 (r-LMp~ 2 (7-1)My, P Py

(47)
and the boundary conditions
E - Lo [, (48)
ae dg
In the special case considered here for which Pr = 1, it is convenient to
define
1l 2
el + =1 —
— b 2
H = 22 = T > + % T (L('9)
Yo (7=-1)M,
Note, then, that
ar g
dH o & + " =- e T zT (50)
dg Pyl P Uy S Pyl

7



Further define:

D
il

=l
I

OLI!

so that (47) is simply

a6 _ 5 = (98
ae ag A,

where, by definition,

at £ =0, 6 =0

ds
as — >0
£ @, e
The only possible solution is, of course,
6 =0 E-gg = i
£ dg

— -1
T =1+ 2= M7 < -
2
and

from which also equation (16) stems. Equation (46) then becomes,

g _ au - b +
dg

cilo

where, by definition,
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(55)

(56)
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at £ =0, U =1 (59)
and the boundary condition is:
du
> 00, — > 0 60
&>, (60)
and where
a = Zi% , b=1+ ;bz + % Chc’ c = Z%% + > (61)
7 "My

(There should be no confusion between this constant, a, and the speed of sound,
a, used earlier.) The solution for d% > O (see eq. (36a)), where

d =Vb" - Lac = 2aB2 - A (62)

is

-28E _ a—b+c><2aﬁ—b+d,2a—b—§>b/d (63)
ais - bu + ¢/ \2au - b - d  2a - b +

from which, given 7, M,, and Cp,, one can calculate T versus & (or, given
just the two parameters b/a = 2B and c/a = A, one can find T versus at;
compare (25) and (58) for the case T = TUe, du/dt = 0). Then equation (56)
gives T versus E, and finally one can find

P=% "1
and (61)
-I—)-EE—-—_-ET
Py

versus &. Results for a typical case (7 = 5/3, M, = 1, Che = 1/2) are shown
plotted in figure 13.

The variation of ¢ with x, and hence of the flow variables with x, is
easily found if [ 1is given as a function of T. This variation has been
discussed by many authors in connection with the shock-wave problem. The var-
iation of |I as a gas property, for which reference can be made to the
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literature, is not considered here, as the intent was simply to show how the
boundary-shock-wave structure could be calculated, in addition to obtaining
the result (57) needed in above developments.

APPROXIMATE SPECTAL APPLICATION OF THE
GENERAL THEORY TO RAPID VAPOR ABLATION

The purpose of this section is to make a calculation of the boundary
shock wave near the forward face of a blunt body having the properties of a
stone meteor entering the earth's atmosphere under conditions for which the
boundary-shock phenomenon might be expected to occur.

In an effort to eliminate all unnecessary complications, a number of
idealizations and approximations are used in the present application. Con-
sider the same assumptions used in the development of the theory above. The
applicability of the properties of a perfect gas with Pr = 1 in the vapor
from a stone meteor will be discussed later. The assumption of steady flow
is here one of quasi-steady flow, for which time derivatives are neglected in
comparison to space derivatives, with forces in the body, or wall mass,
replaced by accelerations of the body. The ablating surface is considered to
be receding back into the liquid material with constant relative speed ug, so
that in the coordinate system of figure 1(c), the surface x = 0 is station~
ary and the wall material is moving toward the surface with constant velocity
ug. Assume that very little heat radiation is emitted or absorbed within the
short distance to the right of b in figure 1(c), but that all radiation is
absorbed at the surface, within the very small distance e in figure 1(c).
Assume also that no chemical or phase changes take place to the right of xy
and that only vapor is blown off.

With very large Rep, the region of possible rapid variations under
consideration in the flow near the surface is very thin, so that consideration
of one-dimensional flow out of a plane surface gives a valid approximation and
conditions (14) are the appropriate first-order outer boundary conditions.

The one-dimensional equations of motion which apply to the material regardless
of its phase, and hence which can be used to relate conditions to the left of

x = 0 (in the unvaporized state) to those in the flowing-vapor state are given
vy (5), (6), and (7), or in their integrated form:

constant

il
=]
I

pu

2

pu® - f = constant (65)

pue + % pu® + q - uf = constant

Equations (1) through (15) apply for x > 0. The region from s to b in fig-
ure 1(c) is treated as being infinitely thin, so there are jump discontinui-
ties in velocity and density at x = 0 due to the phase change. To the left
of x = 0, the compressive stress is -f, the equation of state is
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p = p, = constant, (x <0) (66)

and the heat flux is

a=4q, =-k %g , (x <0) (67)

where k is appropriate to the state of the material at the particular loca-
tion x. With subscripts a, f, and s denoting values at the respective
locations: arbitrary point inside the wall at the cold solid state (xa),
fusion interface (xf), and surface just inside radiation-absorption and vapor-
ization interface (x4 = O ), one can write for the internal energy in x < O:

e - eg

c T - Ty), < xp)
so1( (x < xp (68)

e - eg csoz(Tf - Tg) + Lp + C

Ziq(T - Tf)) (xf <x ,S xg = 07)

where cgpj and Cyig are the specific heats in the solid and liquid, taken to

be constant, and Ly 1is the latent heat of fusion.

For x > 0 the solution to equations (65) is given in the above section
on the general theory of the boundary shock wave.

For x < 0 equations (65), (66), and (67) give

Py = DS
Ug = Ug

B (69)
fa = fs

- eg) =i (82) -k, (L
Dsus(ea es) = kg <%— N Kg <§x .

which simply determines the temperature distribution inside the wall and,
hence, relates the heat conduction and temperature at the surface (x = 07) to
the heat conduction and temperature at point &a inside the wall. By defin-
ition, x5 1s in the cold interior of the wall, where T = Ty = constant and
dT/dx = 0, so the term kg(AdT/dx), in (69) is zero.

To relate the conditions across the surface at x = 0, equations (65)
take the form:
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p.Up = P Ug = m (702)

b s
Py *+ Py~ Tp = PgusT - fg (70p)
1 3 1 daT
PLUBEL + 5 Pylp” + Gp + Gp + Un(py - ™) = pglges + 5 pus” - <k-——)s - ugfg
(70c)
Noting from equations (70a) and (70b) that
fs = —pup(wy — ug) - 2 + Ty (71)

and substituting this into (70c), we find

_ (4T —e) + 2 -ug)® 4 (p, -
Ao, T T <k /s o (e = o) + 5 oy (U - ug)” + (py = ) (- )

(72)
The internal energy change across x = 0 1is approximately
eb - eS = I’V had RT'b (73)

for vaporization either at low rates or at high rates, where L, 1is the
latent heat of vaporization for low rates (see appendix B). It is convenient
to define (using egs. (68) and (73)):

R (The)
= cs01(Tp = Ta) + Lp + ¢334(Ty = Tp) + Ly (7o)

which is the heat that must be transferred to a unit mass to raise it from the
cold state at temperature T, to the vapor state at temperature Ty, includ~
ing all phase changes. (Note that Ty, has been taken to be equal to Tg;

see appendix B.) Then the terms

< I + oyuley - o) (75)
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in equation (72) can be replaced, using (69), by
o, U (gab ~ RTb> (76)

Equation (72) is further simplified by using
up — U = wp(l - pb/ps) A Uy (77)

to obtain
— 1. 2 83
~Ap = Pl (Sap TF U )t Aoy T T (78)

For Pr = 1, it was shown above that the solution for the vapor flow 1s possi-
ble only if g, = Tu (eq. (57)), with which we have finally

~

~A,. T Pyl <Cab + % ub2> , (Pr = 1) (79)

where (., given by equation (T¥0), is a linear function of T, .

For given values of the incident radiative heat flux (-q,.) and the
external pressure (pg), the above equations (including the equatlons for the
boundary shock in the previous section) are sufficient to determine the
boundary-shock solution in terms of two unknown gquantities, say p, and P U

Some approximate eqguations describing the vaporization process may be used to
relate Py and pbub to the other parameters of the problem, and thus to

complete the determination, as described in the remaining paragraphs of this
section.

The rate of vaporization, or the mass flux, depends on the velocities of
the molecules leaving the surface during the phase change, and hence on the
temperature at vaporization. For present purposes, let us accept the roughly
approximate relation used by Opik (ref. 31, p. 2L):

(puly, =% Py Vx (80a)

where oy is the vapor density at saturation pressure and (1/2)v, is the

average component of molecular velocity in the +x direction. For typical
meteoritic stone, this reduces (ref. 31, p. 161) to:
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P, u D o .N1/2
b~ —4 b 17 K
B . 8 8
<; gm cm‘zsec“%> 308 x 10 <l dyne/cm%><11% > (B0m)

With use of the equation of state (10), equation (80b) gives directly

b . /2
__D :d/jg oMb T 3.08 x lo“i/ R/7 (80c)
N 7RTy, 7 Py 1 em2sec™2(%K) ™

For meteoritic stone, Opik gives (ref. 31, p. 160) values for the mean atomic
weight as 23 and the mean molecular weight of vapors as 50. Hence,

R = Ry/(50 gm/mole) = 1.66 x 10° cm®/sec® °K, where R, 1s the universal gas
constant. Since the mean molecular weight 1s about twice the mean atomic
weight, we assume the gas mixture can be approximated as a perfect diatomic
gas with » = 7/5 and cp = yR/(y - 1) = (7/2)R = 5.8 x 108 cm®/sec? °K.
(These values seem to be realistic, since cp for the vapor is then about
half the value of the liquid spec1f1c heat given by Opik as 1.1 X 107 By way
of comparison, the specific heat, c of water vapor is about one- half the
specific heat of liguid water.) The result from equation (80c) is then

M, = 0.333.

My,

The vapor pressure, Py, and the boiling temperature, Ty, may be related
approximately by Clapeyron's equation:

Ly 1 1
Ve 81
pb R \Trer Té> ( )

Clapeyron's equation is derived by assuming that the phase transition takes
place reversibly at constant temperature and pressure while the entropy and
specific volume (or density) change (ref. 32, p. 317; see also appendix B).
Strictly speaking, therefore, Clapeyron's equation would apply only to vapori-
zation at low rates. The use of Clapeyron's equation as a reasocnable gross
approximation relating Py to Ty, din the present application with higher
vaporization rates is justified because of: (1) the exponential (rapidly
varying) dependence of p, on T (see appendix B), and (2) the fact that if
one makes a gross dntultive modification of Clapeyron's equation to account
for the viscous effects and the variation of pressure during the vaporization
process, the results of the calculations are not significantly different from
those obtained using Clapeyron's equation (see appendix B and numerical
results given below).

For the application to the high-speed meteor composed of the typical
meteoritic-stone material, Opik (ref. 31, p. 161) gives the mean boiling point
as 2960° X (at 760 mm Hg or 1.013 x 10° dynes/cm which can be used as the

ol




reference value in equation (81). The value for R 1is estimated above, and
L, can be taken from Opik's data (given below). For reasons that will become
apparent, it is expedient to rewrite equation (79) as a relationship between
9, and T, in terms of known quantities, using equation (81) in the form

D
b = oexp <26.13 - 5§&§5&L§§> (82)
1 dyne/cm® Ty

and the equations

o, = P, /RT, and w, =M /7RTb (83)

The result is

L - exp<%6 13 - 35 — K ab Eb) . 7Mb%}
1 erg cm “sec™ 1 1 em®sec” T2

(8%)

where € . = gab(Tb) is given by equation (74b) and where, from Opik (ref. 31,
pp. 61 and 161), values of the required constants in (7hb) for this case are:

Ly = 2.65 X 10° erg/em, L, = 6.05 x 10™ erg/en
Cgo1 = 8.95 x 10° erg/egm OK, Cyiq = 1.1 x 107 erg/egm °k
7, = 200° K T. = 1800° K

If the radiative heat flux to the wall causing the ablation, -¢,., and
the external pressure, D, are specified, then the solution of the equations
for the boundary shock wave 1s determined and can be calculated by iteration
on equation (84%). Thus, a trial value of Ty may be chosen and iterated upon
until the proper value for g, 1s obtalned. Then is determined by equa-
tion (82), the ratio pg /p can be computed, and equations (39), (28), (29),
and (30) can then be used success1vely to find o /pb, Che s Te/Tb, and Me.

The radiative heat flux, =Qp is a function of conditions of a particular
problem. It depends, for example, on a body radius, speed, and altitude.
Representative values of -4, and p, wused are, respectlvely, 17,300 watts/cm
and 7.55 x 10° dynes/cmZ found from a simplified approximate calculation of
Tlow in the forward region of a spherical body of L.62 m radius moving at
15 km/sec at an altitude of A0 km in the earth's atmosphere. The calculations
as outlined herein, using the numbers glven ahove corresponding to stone
meteors, lead to: M, = 0.333, Ty = 2720° X, p, = 3. 345 X 10° dynes/cm?,




i

T4 x 107° gm/em®, w, = 2.65 x 10* cm/sec, pe/pb = 2,257, pe/pb = 2,215,

Pb
0.149, and Che = 13.772. If the "modified Clapeyron's equation” is used

Me

(appendix B), the above numbers are the same except for replacement of corre-
sponding values by: -q. = 17,120 watts/em?, r, = 458 m, 7y = 2,880° K,
= 7.00 X 107° gm/cm3, and w, = 2.73 X 10* cm/sec.

Py
CONCLUDING REMARKS

An attempt has been made to present an introduction to a possible
phenomenon defined herein as a boundary shock wave, a thin layer of gas
through which viscous effects decay in very high-speed mass transfer accompa-
nied by large heat transfer. The general theory of laminar flow through a
plane boundary shock was developed. Results from the genersl theory include
calculations of the conditions existing across a boundary shock, and of the
internal boundary-shock structure, for given conditions at the boundary. The
solution of the governing equations was reduced to closed-form expressions for
the quantities of interest under the restrictions of a perfect gas flowing at
constant total enthalpy. Numerical results were obtained and plotted for the
case where the specific heat ratio, y, is 5/3.

This theory was then applied to rapild vapor ablation from a body with

flight conditions appropriate to a possible meteoric fireball in the earth's
atmosphere.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Sept. 22, 1965
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APPENDIX A

PRINCIPAL NOTATION

A, B constants defined by equations (26)
a speed of sound (eq. (21))
a¥ critical speed of sound defined by equation (23)
C constant defined by equation (23)
Chc conduction heat-transfer coefficient, o
3
2 Po

Cy, C2 components of random molecular velocity in the direction of x, and
perpendicular to x, respectively

Cy, Cp specific heats at constant volume and pressure, respectively

e specific intermal energy

f stress, or "surface force” per unit area

H dimensionless total specific enthalpy (eq. (49))

h specific enthalpy (eq. (9))

k thermal conductivity

L characteristic length, especially width of wvapor region

Le, Ly latent heats of fusion and vaporization

Iv viscous length, ﬁb/pbub

M Mach number, E

m mass flux (eq. (65))

~ - IJ.CP

Pr Prandtl number based on u, =

P thermodynamic gas pressure

q heat flux (to the right in fig. 1(c))
CH conduction heat flux (eq. (1))

9y radiative heat flux
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gas constant (eq. (10))

Reynolds numbers defined in figure 1

body radius

specific entropy

temperature

dimensionless temperature (eqs. (44))

time

velocity in the x direction

dimensionless velocity (eqs. (44))

space coordinate, positive to the right in figure 1(c)

change in specific entropy due to heat transfer (external
process) across a boundary shock (eq. (35))

change in specific entropy due to irreversible (internal)
processes, that is, entropy production, across a boundary
shock (eqgs. (31))

total change in specific entropy across a boundary shock,
Se - 8p (eq. (33) for a perfect gas)

Cc
ratio of specific heats, EE
.

heat that must be transferred to a unit mass of material to
raise it from the cold state at temperature T, to the
gaseous state at temperature Ty, (egs. (7h4))

defined by equation (51)

defined by equation (4)

dimensionless independent variable defined by equation (45)

mass density per unit volume

defined by equation (1)



value

value

value
the

value

Subscripts

inside the wall (x < 0) where k %E;g 0

at the boundary in the gas (x = 0%)

in the gas outside the boundary shock wave (x = «) (or outside
boundary layer in fig. 1)

at the surface, inside the wall (x = 07)

values upstream and downstream, respectively, of a simple shock wave

Superscript

condition where u = a
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APPENDIX B
APPROXIMATE THERMODYNAMIC EQUATIONS FOR RAPID VAPORIZATTON

Two different approximate formulations for the vaporization process are
considered. The first is well known, but, for quantitative accuracy, its use
might be limited to fairly low rates of vaporization. However, the results
serve as a foundation for the proposed formulas applying to more rapid

vaporization.

The first law of thermodynamics for an element of mass undergoing a phase
change is

T ds = de + p dv (BL)

=dh - v dp (B2)

=cy dT + T <§§> dv (B3)
v

where v = 1/p is the volume per unit mass. Denote the initial state
(1iquid) by subscript i and the final state (vapor) by subscript f.

1. PFirst approximate method.-
If the phase change takes place at a low rate, the process is nearly

reversible, isothermal, and isobaric. The heat transferred reversibly to the
element, per unit mass, or the latent heat of vaporization, is, from

equation (B2),
Ly = T(sp - s;) = he - by (Bka)
=ep - e; +p(vp - vi)
~ o = € + DVp

= e, - e; +RT (BiD)

Since p and T are constant during the process,

o(T) (B5)

b

so that
@,
O/ AT
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Integration of equation (B3) for the process at constant T gives then

dp dp
Ly=T = (v - v; T —= v B
Use of the perfect gas equation of state:
pevy = BT4 (B8)

in (B7) then gives
P _wdl (B9)

Equation (B9) integrates (for constant L) to give the well-known Clapeyron's
equation for the pressure to be overcome by the molecules escaping the liguid
(the saturation vapor pressure) as a function of the vaporization (boiling)
temperature:

IW'< 1 1

P =7 -7 (B10)
iy - e R \Trer Tf

b

ref

For a vaporization process rapid enough that it is not reversible and the
pressure is not constant, Clapeyron's eguation should still provide a reason-—
able first approximation for P as a function of Ty for the following rea-

son. The variation of pg with Tp is exponential, so the variation of Pe

due to changes of p during the process and due to irreversibility will be
negligible in comparison to the dependence on T 1if those effects are not
large.

2. Second approximate method.-

For higher rates of vaporization the process is not reversible because of
viscous dissipation, and not isobaric because of significant viscous stress,
which makes the normal stress on a fluid element different from purely thermo-
dynamic pressure. The following estimate of the relationships among the ther-
modynamic variables for the vaporization process 1s proposed as an improved
approximation in that case.

The steady-flow momentum equation is

P + pu2 - T = constant (B11)
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For the first approximation above it was implicitly assumed that both pu2
and -1 were negligible, so that p was constant during the process of the
phase change. For this improved approximation, assume only that

pu2 <p - T (B12)

(with this condition remaining as a limitation on the use of the final results).
Then, during the vaporization, we have, approximately,

P-T=Dp— Tp (B13)

For rapid vaporization, the total heat supplied to a unit mass during
vaporization could be denoted, using equation (B2), as

1Y
L% = T(sp - 85) = hp - By -f T, ap (B14)

Py

Although Ly* may be quite different from the value I, for slow vaporiza-

tion rates, equation (BYb) may still be retained as a valid approximate

energy relation for high rates. The reasoning is as follows: In the process
of vaporization from a ligquid surface, the individual molecules escaping the
intermolecular bonds (close-range forces) acquire a certain amount of potential
energy, which, in the macroscopic sense, is thought of as increased internal
energy of the fluid. This change in internal energy of the fluid, or the
value of the potential energy added to the individual molecules, is assumed
not to be dependent on how fast the interface between the vapor and the liquid
recedes into the liquid, that is, on the rate of vaporization. Thus the same
internal-energy change 1s required for rapid vaporization of the material as
under conditions of low-speed vaporization at the same temperature. Since

< P;s the enthalpy change is approximately

Pe

he - hy = ep - e; + RT (B15)

Thus, for the same temperature and same (ef - ei), the enthalpy change is the
same for high rates as for low rates; that is,

he - hy = ep ~ e; + RT = Ly (B16)

An additional consequence of the above arguments is that the temperature
remains nearly constant during vaporization at a high rate even though the
pressure is changing and viscous effects are important. Since hy = hi(T)

and hy = hy(T) and since hy - hy is the same for high rates as for low
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rates at a given initial enthalpy, h;, and Ty = T; for low rates, it follows

i
that Tg = Ty for high rates of vaporization as well.

In order to understand more completely the relationship between L, and

L,* for rapid vaporization, consider the following. Equations (B14) and
(B16), along with (Bl3), show that

D T
Ly - Lv" =\/p Ty ap =\jp Ty ar (B17)

by o

The quantity Ly ¥ is different from the latent heat for low rates, Ly,

because of the variation of p during the process at high rates, or, equiva-

lently, because of the significant variation of 7. The relationship between
T

JF v dt in equation (Bl7) and the irreversible heating due to viscous dis-
o]

sipation in the process can be found by first writing, for the heat addition,
per unit mass, to the mass element considered in equations (BL) to (B3):

T ds = T des + T 448 (B18)
where

-dg _ —dd. - dap
pu pu

T des = (B19)

is the heat transferred to the differential element per unit mass during the
vaporization process,

4= dp + e (B20)

is the heat flux (positive in the direction of flow) composed of the flux of
radiation being absorbed during the process and flux of heat conduction, and
where

T dis = T 98 (B21)
pu

is the heat added by viscous dissipation per unit mass of the differential
element. Now, from equation (B17),

T. U.f
T f Telp
Ly — I =\/F v aTt =\/F udr - L L _\jp T du (B22)
o pu pu )

(0] uq
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where pu 1is constant for the vaporization process, by conservation of mass.
With equation (B21l), then,

T (£)
Ly - Ly ==L - T 4, (B23)
v oe L/;i) is

Thus the difference between Iy, and Ly* 1is due to the work term
Tfuf/pu = Tf/pf as well as to the irreversible heating by viscous dissipation.
Even if the irreversible part of T(sg ~ s;) in (B14) is much less than the

reversible part (which is true because of large q, being absorbed in the
vaporization process), Ly* can be significantly different from L, because
the reversible part of T(Sf - 85 ) is different due to the pressure change.
However, as pointed out above, hy - hj = L, remains the same at a high vapor-
ization rate as at a low rate.

The vapor pressure, pp, in Clapeyron's equation, (B10), is interpreted as

the "pressure to be overcome" by the molecules escaping the liguid. Since for
rapid veporization there is an additional stress, ~Te, to be overcome, let us

assume that Pe in Clapeyron's equation can be replaced by Prp = Tr to

obtain a rough approximate relaticnship between the final total compressive
stress of the process, Pr =~ Tgs and the temperature, Te = Ty:

Ly 1 li>
P. — 7 = T T
f £ _ eR Trer Tr (B2k)

pref

Recall from kinetic theory (for a monatomic material) that if the material is
in equilibrium in the final state, as assumed in deriving Clapeyron's eguation,

then,
1
pf=§pf<cl +202> <p

(see the section "Causes of Boundary Shock Waves" for terminology). Also from
kinetic theory in the case of mechanical nonequilibrium (i.e., significant

viscosity),

(P - T)f = (O_C_F)f

Hence, if (pc,2)y 1is regarded as the guantity limiting the outflow of new
vapor molecules {equal to the pressure in the equilibrium case), then it is
natural to write as an approximation the above modified Clapeyron equation,
(B24), for the nonequilibrium (viscous) case. Since the relationship between
py and Ty now involves Tg, for a given application Tg would have to be
determined from the coupling with the equations for the flow outside the imme-
diate region of the phase change.
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Although the intuitive result, equation (B2L4), was not derived rigorously,
it is consistent in that, as 7, = O, Clapeyron's equation is recovered. The
use of this "modified Clapeyron's equation," (B24), is justified by the fact
that there must be some such relationship characterizing the properties of the
material during the rapid vaporization, and the results obtained with its use
must be assumed to be qualitatively, rather than quantitatively, correct.
Also, equation (B24) is useful in determining when Clapeyron's equation, (B1O),
is valid quantitatively. If under given conditions both (BLl0) and (B24) give
nearly the same gquantitative results, it can be assumed that those results are
accurate.
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Figure 1.- Analogy of boundary shock wave with boundary layer and shock wave.
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Figure 4.- Boundary-shock Hugoniot diagram for 7y = 5/3, Pr = 1.



4 -
3 | —
2 -
l | —

O
_l —
_2 L
O

Cpo1.00/ 50/ 25 10
0
- _‘.——”1,7 ‘ | _ | ] |
a -\~\\ '-'---__l~\\ [ | 1
o\ \
e o L) \
C.=50\ .25 10
IhI e \h B N l l
| 7 3 4 5 6
Mp
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Figure 6.- Total entropy change across a boundary shock (y = 5/3, Pr = 1).
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Figure 9.- Temperature ratio across a boundary shock (y = 5/3, Pr = 1).
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-201—

—-25L | | | | |
0]

Figure 1l.- Minimum Cp, for real demsity ratio (y =5/3, Pr = 1).

ko



50

Figure 12.- Conditions across a boundary shock for Chc = -0.1
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